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ABSTRACT

Output probabilities of finite-state-machine elements are studied when

the input of the machine elements is a random process. Delay element,

modulo m adder and modulo m multiplier are considered as the machine

elements. Anew approach to the problem is made by defining the trans-

formation matrices T and U for a modulo m adder and a modulo m-- -- a

multiplier respectively. By using these matrices, the output probabilities

of the machine and the stochastic matrix of the output are given in

explicit expressions, assuming that the input process is a finite-state,

time-invariant Markov process. A few examples of the combinatorial

circuit of these elements are also studied.
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I. INTRODUCTION

A few probabilistic input-output relations of finite-state-machine

elements are derived for a random input. We defined the transforma-

tion matrices T and U in order to express the output probabilities-- -- a

in explicit relations, which are the matrices with entries of l's and

O's. A few properties of these matrices are studied. T is the trans-

formation matrix for the modulo m adder and U is that for the mo--- a

dulo m multiplier. If we restrict ourselves to a Galois field, or in

other words, if m is a prime, we can obtain the consistent expres-

sions for the probabilitistic relations both for the modulo m adder

and for the modulo m multiplier.

Conditional probability of the two inputs of the machine is consi-

dered. In particular, modulo 2 multiplier is an input-dependent ran-

dom switch. Combinatorial circuits using these modular circuit ele-

ments are analyzed in terms of the conditional probability and the

absoute probability of the inputs. The stochastic matrix of the output

of a few combinatorial circuits is also given in terms of the input

stochastic matrix and the transition matrices we defined, when the

input is a finite-state, time-invariant Markov process.

II. BASIC ELEMENTS OF MODULAR CIRCUITS

We will consider a symbol x which belongs to.a set of symbols

S with m distinct component symbols such that

S= {0, 2,... ,m-l} (2.1)

We define the absolute probability of a symbol x at time t as

r t (X= 0)7

- t (x=l 1

-( ) (2. 2)
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where

Pt(x) = Pr(x=x at time t).

Suffix t will be omitted elsewhere through this paper unless it is neces-

sary. Note that Pt(x) is not the function of x but rather of t as is seen

in the definition (2. 2). However, we use this notation for convenience.

A. Delay Elem'ent\

If we denote an input and an output at time t by x(t) and z(t),respec-

tively, and the delay operator by D, then

z(t) = D x(t) = x(t-l) (2. 3)

x(t) D z(t)

Therefore, we have

Et(z) = Pt_1(x) (2.4)

where x, zc S.

B. Modulo mAdder

We define an operator E of addition modulo m such that

z=a(9 x a+x mod m (Z. 5)

where a, x, z E S.

Example

akx 0 1 2 3 4 z= aqx mod 5

0 01 2 34
I 12 340
2 2 340 1
3 340 12
4 40 12 3



As is seen in the above example, the vector z is obtained by

shifting the vector x by an amount equal to "a.", cyclically to the

descending direction of x. Therefore, by defining a transformation

T such that

"0 0 0 ... 0 1 mxr
1 0 0 ... 0 0
0 1 0 ... 0 0

T 001... 00 (2.6)

L0 0 0 .... I 0

we have the following relation:

P(z a) = TaP(x), x,z, aE S (2. 7)

where P(z I a) is P(z) when "a" is known.

It is easy to see that Ta is a transformation which gives the

one-to-one correspondence of x and z, because Ta has only one entry

of I in each row and in each column and 0 elsevvhere for any ae S.

Now, we have the basic relation

Ta Tb = Tab (2. 8)

T is periodic with period m and

m 0
T = T = I = identity matrix

Also we can -verify

in-I

_Tk , : (2.9)

Ta is an orthogonal matrix for all a E S, because

a' a
TaT = I VaES (2.10)

a

Therefore, T yields an orthogonal transformation of P(x).
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More in general, if we consider a modulo m adder with one random

input and k constant inputs cl, c.. . , ck as depicted in the following

figure, then the left side figure is equivalent to that of the right side,

since the associative law holds for the operator (.

x I- + z x ++

cI c...ck
c1 c . ck

Therefore, we have

c Ic ck.E(Z I cl, CzP .... P c k) T T 1 .... T P(X)
T IcI c ... 1ck P.(x)

Next, we will consider a modulo m adder with two random inputs

x and y. Then the output z is given by

z = x(Dy

In general, x and y are not statistically independent and we define

a conditional probability vector of x for a given y, such that

P'(x= 0.1 y)
S(x(I y)

P •jy - (2.12z)

I P(x =m-1Iy)

Then, from eq. (2. 7), we have

P(zI y) = TYP(xj y)

Therefore, averaging this equation over all ye S, we get

m-1

P(z) = P(y)TyP(x_ y)

y=O

-4-



or equivalently

m-i

P(Z) = P(x)TXP(y I x) (2.13)
x=O

In another expression, since a component of P(z) is the skew sum

of the joint probability, matrix of x and y, we can calculate it

according to the following f~rnuJa. -

P(Z--l) * - p(O, 1) RP(O,-m -) --
' ~ ~ ~ G I" /p• p1 (1, my

-~-(2.14),

)!p0---0)• p(m-,1) 1 .< .•.-p(m-l,, M-i)

where p(x, y) is the joint probability of x and y.

Now, we define a transition matrix G such that

_G_ [P(xJ0), T P(x[ 11), T z P(xJ 2,), . -.. ,_Ti-1 .P(x Im-1]

-P(0 0) P(mn-lI 1) . . .. P(1 rn, i
P(O 0) P(0Jl) .... P( I mr-i)I.P(ZI 0) P(O, 1), . . ( m -1)

P(z~ 0) P(l 1) ... P(31 m-1)
- .: (2.15)

P((m-l 0) P(M--2 1) .... P(O rm-n)

Then, using this matrix we can rewrite eq. (2. 13) in an explicit

formula;

P(z) = G P(y) (2. 16)

G' is an m by m matrix and is a stochastic matrix, which

satisfies

rn-i rn-I

I [ G] =I[--a i.=l (2.17)
j=0 i=0
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This can easily be proved recalling that TJ is a transformation with

one-to-one correspondence and that

m-1

I P(ij j) = 1
i=O

If x and y are statistically independent, then P(xI y) = P(x) and

G=[P (x), T P(x), T 2 P(x),..., Tm- P(x)]

P(0) P(m-1) P(m-2) .... P(---
P(l) P(0) P(m-l) .... P(1)

- (2.18)

P(2) P(l ) P(0) .... P(3) l(.8

IP(m-1) P(m-2) P(m-3) ... . | )

From eq. (2. 12) and. knowing that P(xj y) = P(x), we have

m-i

G P-- P(x) Tx (2.19)

x=0

Also we see that

P(z) = I P(x = z-y mod m) P(y) (2..20)

y

This implies that P(z) is given by the composition modulo m of

P(x) and P(y).

Furthermore, if

P(xI y) = P(x) = 1/r , xe S

then

mn-I 11i 1 ...

G=4 5  TX'ml-- .] 1 1 ' 1... 1 (2.21l)

,c0Li 11i...
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Therefore, P(z) is equal to I/m for all zi S regardless of P(y), i. e.

_P(Z) = -

This is also true for any P(x) when P(y) = i/m for all y E S.

C. Modulo m Multiplier

First, we will consider a constant multiplier defined by

z = ao x = ax mod m (2.23)

where a is a constant, x is a random input and z is an output of

the multiplier as shown below.

x 0 0 Z

a
As we have done for modulo m adder, we also define an m by

m transformation matrix U such that

1, i= aOj

aij , i aoj(2.24)

U a is ij-th element of the matrix U . A few examples of U are

shovn in the appendix.

If x = j is transformed by Ua, then from eq. (2. 24) z is given

by z = i a aoj. Therefore, U is a transformation which gives the--a

change of symbols from x to z according to z = a ox. The absolute

probability vector of z for a given constant "all is now given by
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P(zI ja) = P(x) (2. Z5)

Before going into the probabilistic relations of x, z and a,

we will study more about U a--a

i) U has exactly one entry of 1 in each column and 0 entries

elsewhere.

Proof. Each of m input symbols has to make a deterministic transi-

tion to a certain output symbol in S. If there were two or more

entries of l's in a column, then there would be two or more outputs

corresponding to that input. This contradicts the definition

of deterministic machine elements. If there were no entry of I in

a column, then there would be no output corresponding to the input.

This contradicts the fact that the output symbol should be

either one of the symbols in S. Therefore, there is exactly one

entry of I in each column of Ua and 0 entries elsewhere. Q. E. D.

2
ii) Consequently, Ua has exactly m entries of I's and m -m

entries of O's.

Now, we will prove the following theorem:

Theorem 1. If a 0, then U has exactly one entry of 1 in each column--a

and in each row, if and only' if

GCD(a,m) = 1, a E S, a ý 0 (2.26)

where GCD(a,m) denotes the Greatest Common Divisor of a and m.

Proof. From the definition of U by eq. (2. 24),

i= aoj, jc S, a e S, a 4 0

then there exists a certain positive integer k such that

Si= aoj = aj - km, iE S

Therefore, GCD(a,m) divides (aj-km) and hence, i; i.e.,

-8-



i m (2.27)= a~j mood (.7

GCD(a, m) GCD(a, m)

Now, m/GCD(a, m) is a prime. Recalling the theorem of Galois

field, i. e. , for r, x, s e S,

V Vs Vr 3 x [xe s = r mod p]] {p is prime} (2.28)

we have

GCD(a,im) 3 j[ GDa, GCD(a, m)

''{GCDla, m) is a prime, a, je S} (2.29)

The number of l's in Ua is exactly m, and from the property

(i) there is exactly one "1" associated with j for all je S. Therefore,

i can take any integer in S, if and only if GCD(a, m) = 1. From the

property (i), there is exactly one entry of 1 in j-th column for all j

in S. Therefore, there is exactly one entry of 1 in the i-th row for

all ic S, if and only if GCD(a, m) = 1. Q. E. D.

Consequence. There is one-to-one correspondence between input

symbols and output symbols, if and only if GCD(a, m) = I.

Theorem 2. For all a, be S,

U U -bUb = a -ao b (2. 30)

Proof. Let us take a, b, i, j e S, then by the definition of Uat

1 i a k

U =
aik 0, i a ok

U = {, k= bo jUhkj 0, k4 bo j

Since i is uniquely determined by i = aoboj,

See, Zadeh, L. A. 1 Sept. 21, 1961. See also, Ref. 2.
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m-1

[.-a•-b ij = Ua ikUbkj = UaikUbkj
k=O

1f, i= a oboj
0O i k aoboi

Therefore, by the definition of Ux

U U =U-a---b - -ae b

Furthermore, since aob = boa, we have

U a =U 2 .a=_UbUa Q. E.D.

From these theorems, we can derive the following properties;

U rn= _U0 (2. 31)

UOU = UO, for all k; integer_> 0 (Z. 32)

U_ =1 (2. 33)

U n Tk U k V k E S, n = even integer (2. 34)

In particular,
z

U-1 -I

Theorem 3._Ua is an orthogonal matrix, i. e.,

ua- Ua=1 (2. 35)

if and only if a 4 0 and

GCD(a, m) = 1.

Proof. r-i

[U, U] jU U a
-aa 13I kia kj

-10-



From the definition (2. 24) of U a'

1, k = aci = aoj

U U = a 0
a a 0, otherwise

Recalling the theorem of Galois field* that

m

{aoi : aoj mod m)}•{i = j mod m) } (Z, 36)

we have r m
1, i = j mod GCD(a,m)

[-a -aij 0, otherwise

Now, i = j mod m/GCD(a, m) is unique for i, j e S, if and only if

GCD(a, m) = 1. Therefore, UI U = I, if and only if a ý 0 and

GCD(a, m) = 1. Q.E.D.

Consequently, we see that Ua is an orthogonal matrix for

all a S except a = 0, if m is a prime. Furthermore, U1 and U- --m-l1

are orthogonal matrices for all integers m > 2.

In connection with the determinant of UIa, we have the following

theorem;

Theorem 4.

1, if a • 0, and GCD(a, m) = 1

I --l 1 0, if a- 0, or GCD(a, m) 1.

Proof. For a 0, it is evident that I [ = 0. If GCD(a, m) = 1,

from the theorem I there is exactly one entry of 1 in each column

and in each row. Therefore, Ua is transformed to an identity ma-

trix by a certain number of permutations of columns or rows. The

value of the determinant does not change with such permutations

except the sign of it, which is positive for an even number of permutations

See, Zadeh, L.A. 1 Sept. 21, 1961. See alsb, Ref. 2.
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and negative for an odd number of permutations. Since II 1, we

have I Ual =+ lif a 0, andGCD(a,m)= 1.

If GCD(a, m) ý 1, then by the theorem 1 there exist some

rows whose entries are all zeroes. Therefore, the determinant

of it is zero. Q.E.D.

Exam pl e.

m=3, U.oI =0, IUI I1, U21 = -1
m = 4, _- -0, I 1 =0' I ,U:- ILZ I--0, I 31£ =-l
m=5, O I=0, IUH1 I-l, Z I2 I-1, U131 =-

I U4 =1m=6, IO =0, -1 I_-l ' I U? IZ =0, IU1£ =0
1_4 =o, IU51--1

Consequently, we can conclude that there exists an inverse

matrix of U a, if and only if a ý 0 and GCD(a, m) = 1.

So much for the general properties of U_. a we will consider a

cascaded connection of the constant multipliers with constants

ci, c 2 , c 3 ,..., ck ES.

0,-"

CI c 2  ............. ck

Then, from the theorem 2, we have the absolute probability of

output z.

P(z I Cl c2 c k)=-U UU .... UcP(x)
=(1 k (237)

-- u P(x)
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Next, we will consider a modulo m multiplier with two

random inputs x and y. By the similar fashion to that which we used

for modulo m adder, we can get

P(zl y) = U P(x y) (2. 38)

Therefore, we have

M-1

P(Z) = P(y)UyP(x y)

y=o
or equivalently

m-i

P(Z)I =P(x)U xP(y x)

x= 0

Defining a transition matrix H such that

H_= [Uo(x 10), U1 P(xI 1),..., Um 1P(t in-I)] (2. 40)

we can rewrite eq. (2. 36) in the form

P(z) = H P(y) (2. 41)

Here, H is an in by m square matrix and its transpose H'

is a conditional probability matrix, which satisfies
m-1

H 1 (2. 42)
j=0

This can be proved as follows:

From the definition of H, we have

rn-i
Hi. = Uikk )

-13-



Therefore,

rn-1 rn-i n-Im

j=O i=O i=O k=O

From the property (i) of Ua, we know that there is exactly one entry of

1 in each column of U. for any j e S, hence, the column sum of U. is equal

to one. Also the second term of the above equation is one because P(k jI)
is a conditional probability. Therefore, we have

m-iZH!. =1 Q.E.D.
ij

j=O

If x and y are statistically independent, then P(xI y) = P(x) and

H =[jEP(x), UlP(x)W .. _U _P(X)] (2. 43)

M-i

I P(x)U x (2.44)

x=0

Example: Independent case.

m=3 m=5

1 Po Po Po Po
P0 0 0 P P3 P 0 P4

H= 0P1 P 2 __H= 0 P2 P P4 P3
P2 0 P3 P4 P1 P4

0 P P4  P3 P1

Further, if P(x) = 1/rn for all xE S, then from eq. (2. 44)

1 1/m 1/m ... 1/m

0 1/m 1/m ... 1/m
H= 0 1/m 1/m ... 1/m (2. 45)

0 1/m 1/M ... l/M

-14-



Therefore, we have r-i

P(y=O)+ I P(y=i), z 0

i=l
P(z) (2.46)

l P(y=i), z# 0

This shows us that if P(Y=O) is nonzero, the probability that z=O

is larger than the probability that z takes a symbol other than 0,

which is equal for any sVmbols z E S, zj 0.

Finally, we note that in particular for the binary system the

modulo 2 multiplier is simply an on-off switch. If the two inputs are

mutually correlated signals, the modulo 2 multiplier is a statistically

input-dependent random switch.

III. COMBINATORIAL CIRCUITS

We will study here a few examples of combinatorial circuits com-

posed of the machine elements studied in the preceding articles.

A. A Modulo m Adder and Two Constant Multipliers

a

x C + O~z

b

z = aoxlbox = (aDb)o x (3.1)

Therefore, this circuit is reduced to a circuit with a constant multi-

plier with constant (a @b). Hence, we have

E(z I a, b) =-U ®P(x) (3.2)

-15-



B. A Delay Element and a Modulo m Adder

D
x+ z

y(t) = Dx(t) = x(t-l)

z(t) = y(t) )x(t) = x(t-l) ex(t) (3.3)

The conditional probability P(xI y) is now

P [x(t) I y(t) = P[x(t) I x(t-l)]

Therefore, if the input process is a time-invariant, finite-state

simple Markov process, then P(xI y) is the column vector composed

of the y-th column of the transpose of the stochastic matrix B of the

input, i. e., defining

Py = P(xj y) (3.4)

where the stochastic matrix R is

2' = [a 0 ', 1,'.2  'Bm-l1 (3.5)

then, the absolute probability of z is

Pt(z) = G Pt(y) = G Ptl(x) (3. 6)

where

= ['0, TBt, TZ,' 22 , T m-1  l (3.7)

G is independent of time, since p is time-invariant. Using the property

of a simple Markov process, i. e. ,

P t1(z) =G ft (x) (3.8)

.t4 x) = p'__t_l(X) (3.9)

we have

-16-



P_ (z) = Gp_'Pt (x) (3.10)

= 2f G_-1t(x)

= {G'__ P-G'} I P (z) (3.11)

if G is nonsingular. This implies that if I GI # 0 and x(t) is a simple

Markov process, then the output z(t) is also a simple Markov process

with stochastic matrix

{_I,-1 p(G' (3.12)

Example: m= 2
-POI Pol

R = L _ J1 - l

I G__ = pl0-P01
, l io 1-pio?]

T-
1 1 0

_ -p 0 1 (1-p0 1+pl 0 ), i-p1 0 (l + p0 1 -PI 0 )

p- P0 1 (1-P 0 1+P10 ), Pl 0 (1+P 0 lP10o)] (3.13)

_-I PiI 2 [l-'PolPlo , PolPlo (3.14)

LPol+Pl6 PolPlo1 l-PO-fPlO+ZPOPIO]
We will see in this example that if the input process is an independent

process, then

-17-



P+(z) = fP'tl(x) (3.10)

2 p', G__" 1__t(x)

S{GI-•,G'} I(P ) (3.11)

if G is nonsingular. This implies that if I # 0 and x(t) is a simple

Markov process, then the output z(t) is also a simple Markov process

with stochastic matrix

{G -1 G'(312)

Example: m=2

- PO1  Po 1

L 1 -p0o

1 0

- L Ploj

I• -Plo-Pol

-1 1 l F 10 id~c]
G- I- L(olo

_G ,_-P01(1-P01+Pl0) I-P10(I+P0 -l)

P (1-P01+Pl0) 1 P1 0 (l+P0 1 "P1 0 )J (3.13)

G,-i1_G, = [1-l- Pl0o 2 p0 lp1 0  (3.14)

LPol+PI 6 2polplo, 1-p 0 1 -p 0 "+2p0 1 P 0 ]_

We will see in this example that if the input process is an independent

process, then

-17-



Pol+ P1O=l

U_ G= 1'PolPlo' 'PolPloJ
-l2 Ol 0 2P OlPw 0 (3.15)

and, hence, z(t) is also an independent process. If I GI =0, then

Pol=Plo and G" does not exist, and P(x=O)=P(x1)=l/ 2.

VPoi 1-p01] (3.16)

L p Po

and we have

pt+l(Z) - -- L (3.17)[ P001 =[I Plo

regardless of P(x) and t.

In general, if x(t):is an independent process, z(t) is also an

independent process, when I GI # 0. The proof of this statement is

.-given as follows:

If x(t) is an independent process, then pij=pj and

PO Pl P 2 . . . . . Pom-l

Pm-i PO pl Pm-2
G'= Pm-2 Pm- P'0 ...... Pm-3 (3.18)

- P2 P3 . . . . . Po

Therefore, {p G'}ij={pG'}j is independent of i.
m-1

{G'- pG'} ij = .{G'l 1} ik{pG,} kj

0k=
M-1

: ýG} {_0,-1 }ik

k=O

-18-



Now, the second term of the above equation is
m-1 M-1

-l = I .1 (-1)+j IGCofac G.i I

1 G
I G9 - i-th column replaced by l's.

From eq. (3.18), we know that

f-GIIij =Pk k=j-i modm

Therefore,

1,i=n{G'}.. =iI ~
--n )j jPk, k=j-imodm, i,jeS, i#n

Since I G' I does not change by an even number of permutations of GI , by
-n-n

shifting the rows and cblumns of it by n, i. e. , defining

r =i-n mod m, s =j-n mod m

we have

n rs Pk, k=j - i = s - r mod m

i#n, rýO

Hence, we have

m-I

GI- }j= GI /IGl=IG'_O GI/ 1 :Constant. Vi, S
j=0

Therefore,

-19-



{G'-I1_V') i = {G'-I G'} j

Thus, completing the proof. Q. E. D.

If I GI =0, then G_-I does not exist andPt(z) should be found from

eq. (3. 6).

C. Cascaded Circuit of (B)

The analysis of the preceding example can be applied for the

cascaded circuit shown below.
2 xx x n- x

0 D + D D +n~

By the similar fashion we have

P (x )r(k), P (x (3.19)
-t n --t-1 n

where

(0)
=; stochastic mnatrix of the input process

An) G(n-l)' p(n- G(nl) (3. 20)( -1)1 _1(n- 2),1- 1 I0),-I1 _(n0-,1)'
= G_(n-) G .... _ . ... __

G(k) = [ (k), T P(k) ..... Tm -(k)] (3. 21)

G(°) = G

By an iterative method one can find the stochastic matrix at the n-th

stage. Furthermore, from eq. (3. 6), we have

P(x) G n(X)

-M-t n -- t-n 0o

If we consider a cascaded circuit with infinite number of

unit circuits, then

-20-



lim Pt(x) =P(X) = (x G _P0 (x0 ) (3. 23)

where

G 00 A lim GOn (3.24)
n-)oo

Since G' is a stochastic matrix and so is Gin, G can be found by the same

way as we use to find the stationary solution of the absolute probability Q

of a Markov process, whose transition matrix is G'. Therefore, we

have(6,,8, 9,11)

G 0= [Q Q Q ..... Q] (3 25)

m

where Q is an eigenvector corresponding to the eigenvalue X=l of the

characteri stic equation

I XI-Gil = 0 (3. 26)

and Q is uniquely determined from the condition that

m-1
I Qi .

i=o

Example: m = 2

G=L -Pol P 0 1 ]

1 -PlO PlO

.11 
-Pll

l-Pl0P01 POI
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G ,'00 = I .I -P lo P o l l

I-Plo POlI 1P1 o

This result indicates that the output absolute probability of infinitely

cascaded networks of this type is independent of the probability of the

input process and

P (z)=Q

Note that the delay introduced through this circuit is infinity.

State equation of the cascaded network with length n is written by

X n(t) = X n -l(t) OTXn_1 (t-1)

and we can also express it in terms of x (t-i), i.e.,

n0

X(t) = n ()Xot-i) (3. 27)

j=O

Accordingly, we can describe an equivalent circuit with n delay elements

and (n-1) constant multipliers with constants c.'s.

In.

ci = ( )mod m
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D. Delay Element and Modulo m Multiplier

x D Y z

0

z(t) = y(t) Ox(t) = x(t-l)o x(t) (3. 28)

Assuming that x(t) is a time-invariant, simple Markov process, and

using the matrices defined in the preceding article, we have

p (z) = H P t l(x) (3. 29)--t

where H is, for this particular case,

H = [_U0 0  II_UP...2 .2 -_Um-n1 _m-1] (3. 30)

pk is defined by eq. (3. 4) from the stochastic matrix of the input process.

Similar to the preceding example, we have

"__t+1(z) _ ' H Ptl(X) (3. 31)

__t+l(z) = {H' PH}'Pt(z) (3. 32)

This implies that if the input process is a simple Markov process and I HI #0,

then the output process is also a simple Markov process with stochastic

matrix
{H-l

{H' pH'} (3. 33)

Example: m=2

E 1-p
0 1  POl 7

Plo i-P10-]

S= 

[1 1
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U=I

-1 1

10 . i- PIO J

I 1 -plo-1 = 1-P 10o1

H-I 1 i-pl

_ -lPlO-----

LP01(I-0 () Z=[1] (3. 34)

[- _ (-p 10) (,i-p lo)0

Hi-1R H' = Fip 0 l(ip 0 ) PiO(i-pO) (3. 35)
- 1 pL 1) i-plo(1+pol)j

From this we can see that if the input process is an independent process,

then p0 1+pl 0 = 1 and the output process is also an independent process.

E. Cascaded Circuit of (D)x x x2x n
D D n- Dn

If we define the state vectors as in the above figure, then

xn(t) = Xn 21(t) ox n 2l(t-i)

X n tI = x n_- 2t o X n_ 2(t-1)

. ,.. . .. .. ,.. .. .. ,... . .... ,
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and finally we have

n CkO
"Xn(t) = { {x 0 (t-k)} (3.56)

where
co

X =XtýXoXo .... OX

C

nrI xk =Xox ox ...... ox
0 xkXc 0 1  2 n

k= 0

The results are quite similar to the example in (C).

Pt (xn) =p(n)' P (xn) (3.57)

where
P(0)

H(n) (n-l)-l H(n-1) (n - 1)'

- ( n- 2 -1___H n-) ... __H 0'-p H(0)"'_ _H n-)

H(k) •0(k) - (k) U P (k)

H(0)HH(° = H

Then the input-output relation is given by

_Pt(xn) = H nP (3.58)

Also the limiting absolute probability P oo(x 0) is

Po (x )0

where

H' =[Q Q Q......Q] (3. 59)

m
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and Q is the stationary solution of the Markov process, which satisfies

(I-H) Q =Q (3.60)

Ekample: m= 2

H= [1 JP10]

0 -Pl0J

1 1l

In general we have

0 00......0
0 0 0 0......0

H ..... (361)
0 0 0 ....

P__ (x ) - [ (3.62)

This implies that the outpvt symbol is 0 with probability 1 as n approaches

infinity. It is quite natural because "0" is an. absorbing state through this

network, and by an infinitely large number of trials through these network

elements, the symbol at the final stage is absorbed in "'0."
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IV. CONCLUSIONS

We have studied the transformation matrices T and U and their

properties. Further, defining the transition matrices G and H for a

modulo m adder and for a modulo m multiplier derived from T and U

the output probabilities are expressed simply by the product of these

matrices and the input probability matrix.

Also we have studied a few examples of the combinatorial circuit

using these modular circuit elements. Circuits with delay elements are

particularly of our interest. We have shown, in a few examples, that

if the input process is a time-invariant simple Markov process, then the

output process is also a simple Markov process whose stochastic ma-

trix is iteratively found from the input stochastic matrix.

Combinatorial circuits with feedback are not treated yet in this

paper. The same approach would be applied for a circuit with feed-

back, which is now being studied. If we obtain some expressions for

them, it would be possible to generalize this analysis for a general

modular system.

In a digital communication system, or in a digital data processing

system, one may assume a digital computer or a sequential circuit

at the terminal machines of it. Its input will be a stochastic process.

Then, what would. be an output process ? This question is not wholly

answered yet, because the circuit with feedback is not analyzed yet.

It would be very interesting to analyze the probabilistic properties

of such systems in order to design a desired circuit or to optimize

a system in a probabilistic sense.
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APPENDIX

Examples of Ua

m=2 m=4 m=5

0=1110 1 0 Y1 1 1°= -U-0 oo 0 o 0o o
0 00 0 0 000

00 0 0 0 0

1000 ri 0 0 00

E I= [ 1U0I = 0 1 __ 0 1 0 0 0
0 l 0 0 0 1il 0 0 i1 00

0 0 0 1 0

0 0 0001

F 0 0 0 0 0001 0

uz~ 0 U2-1 0 10 0 0
0 0000 0 0

o 0  0 U 10 o ojL 0 0001

m0 1 0 0 0
10 0 0 1 00

1 0 001m--3 010 0 01

00 1 00

uM: o

10 01

_2= i
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m=6

0000 00
0O 00 0 00 0

00 0 0 0 0
000 00

0 00
O 0 0 0 0

0 1 0 O0 00
001 00 0

-f: -0o l o--oI
0 0 0 1 0 0

00001

000001

1 001 0

00 000
0 0010
00 00 0 0

1 01 010
U 3 = 0 0 0 0 0

0 o1 0 1 0 o
0 1 0 1 0 1

000 0

1 0 01 0 0
00000 0

.4= 0 0 1 0 0 1
0 0 0 0 0 0
01 0 0 1 0

T-00000

0 000010
0 0 0 1 0 0

-0 
0 1 0 0 0

L 0 0 0 o
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